It seems we can’t find what you’re looking for. Perhaps searching can help.

Other Related Posts

%2525253C为什么%20做%20电阻%20变化%20与%20温度%3E%0D%0A%3C%2D%2D%2D%3E%0D%0A%3C%22电阻%3A%20变化%20与%20%20热%2E%22 %3E%0D%0A%3CEffects%20of%20温度%20on%20电气%20电阻%3E%0D%0A%3C电阻%20is%20a%20基本%20属性%20of%20材料%20that%20描述%20how%20困难%20it%20is %20为%20电%20电流%20到%20流%20通过%20them%2E%20It%20is%20测量%20in%20ohms%20与%20is%20影响%20by%20各种%20因素%2C%20包括%20温度%2E%20%20关系%20之间%20电阻%20和%20温度%20是%20a%20well%2Dknown%20现象%20在%20的%20领域%20的%20物理%20和%20扮演%20a%20关键的%20角色%20在%20的%20设计%20和%20操作%20的%20电气%20电路%20和%20设备%2E%3E%0D%0A%3CPOP%2D8300%20free%20氯%20在线%20分析仪%3E%0D%0A%3CSystem%20型号%3E%0D%0A%3CPOP%2D8300%20free %20氯%20在线%20分析仪%3E%0D%0A%3C测量%20配置%3E%0D%0A%3C%28HClO%29free%20氯%2E%2E%3E%0D%0A%3C总计%20free%20氯%2F%28ClO2 %29%2FpH%2F温度%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C游离%20氯%3E%0D%0A%3C%280%2E00%2D2%2E00%29mg%2FL%28ppm%29 %3B%26nbsp%3B%26nbsp%3B%20%280%2E00%2D20%2E00%29mg%2FL%28ppm%29%3E%0D%0A%3C测量%3E%0D%0A%3CpH%3E%0D%0A %3Crange%3E%0D%0A%3C温度%3E%0D%0A%3C%280%2E0%2D99%2E9%29%5Cu2103%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3CFree%20氯%3E%0D%0A%3C0%2E01mg%2FL%28ppm%29%3E%0D%0A%3C分辨率%3E%0D%0A%3CpH%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C温度%3E%0D%0A%3C0%2E1%5Cu2103%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C不含%20氯%3E%0D%0A%3C指示%20错误%2010%25%3E%0D %0A%3C准确度%3E%0D%0A%3CpH%3E%0D%0A%3C0%2E1pH%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C温度%3E%0D%0A%3C%5Cu00b10 %2E5%5Cu2103%3E%0D%0A%3C传感器%20life%3E%0D%0A%3CpH%2Ffree%20氯%20传感器%3E%0D%0A%3C12个月%28%20service%20life%20是%20密切%20相关%20 %20%20测量%20中%20和%20维护%20频率%29%3E%0D%0A%3C通讯%20接口%3E%0D%0A%3CRS485%3E%0D%0A%3CMODBUS%20RTU%20通讯%20协议%3E%0D %0A%3C%5Cu3000%3E%0D%0A%3C数量%20of%20通道%3E%0D%0A%3C双%20通道%3E%0D%0A%3C%284%2D20%29mA%3E%0D%0A%3C技术%20feature%3E%0D%0A%3CIsolated%2C%20可逆%2C%20完全%20可调%2C%20instrument%2F发射器%20dual%20mode%3E%0D%0A%3Coutput%3E%0D%0A%3CChannel%20configuration%3E %0D%0A%3C可编程%20点%20至%20游离%20氯%2C%20氯%20二氧化物%2C%20温度%2C%20pH%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3CLoop%20电阻%3E %0D%0A%3C400%5Cu03a9%28Max%29%2C%20DC%2024V%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C传输%20精度%3E%0D%0A%3C%5Cu00b10%2E1mA %3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C数量%20of%20通道%3E%0D%0A%3C双%20通道%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C联系人%20mode%3E%0D%0A%3C%20first%20and%20second%20为%20光电%20switch%3E%0D%0A%3CControl%20output%3E%0D%0A%3CLoad%20capacity%3E%0D%0A%3CLoad %20电流%2050mA%28Max%29%5Cuff0cAC%2FDC%2030V%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3CControl%20point%3E%0D%0A%3C可编程%20function%28Free%20氯%2C %20氯%20二氧化物%2C%20温度%2C%20pH%2C%20计时%29%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3CLoad%20容量%3E%0D%0A%3CLoad%20电流%2050mA %28Max%29%5Cuff0cAC%2FDC%2030V%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3CControl%20point%3E%0D%0A%3C可编程%20function%28Free%20氯%2C%20氯%20二氧化物%2C%20温度%2C%20pH%2C%20计时%29%3E%0D%0A%3C电源%20电源%3E%0D%0A%3C已连接%20至%20电%20电源%3E%0D%0A%3C%5Cu3000%3E %0D%0A%3CAC80%2D260V%3B50%2F60Hz%2C兼容%20with%20all%20国际%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3Cmarket%20power%20standards%28110V%3B220V%3B260V%3B50 %2F60Hz%29%2E%3E%0D%0A%3C工作%20环境%3E%0D%0A%3C温度%3A%285%2D50%29%5Cu2103%5袖口1相对%20湿度%3A%5Cu226485%25%20RH%28非%20凝露%29%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C功率%20消耗%3E%0D%0A%3C%5Cuff1c20W%3E%0D%0A%3C存储%20环境%3E%0D%0A%3C温度%3A%28%2D20%2D70%29%5Cu2103%5袖口1相对%20湿度%3A%5Cu226485%RH%28非%20凝露%29%3E%0D%0A%3C安装%3E%0D%0A%3CWall%20安装%28与%20 %20预设%20back%20封面%29%3E%0D%0A%3CCabinet%20重量%3E%0D%0A%3C%5Cu226410kg%3E%0D%0A%3CCabinet%20尺寸%3E%0D%0A%3C570%2Amm%2A380mm %2A130mm%28H%5Cu00d7W%5Cu00d7D%29%3E%0D%0A%3C当%20a%20材料%20是%20受到%20到%20an%20电%20电流%2C%20%20运动%20的%20电子%20在%20%20材料%20产生%20热%2E%20这%20热%20导致%20%20原子%20在%20到%20振动%20更多%20大力%2C%20其中%20在%20转%20增加%20%20原子%20在%20电子%20和%20之间%20atoms%2E%20These%20collisions%20impede%20the%20flow%20of%20电子%2C%20resulting%20in%20an%20increase%20in%20resistance%2E%20This%20phenomenon%20is%20known%20as%20the%20Temperature%20coefficient %20of%20电阻%2E%3E%0D%0A%3C仪器%20型号%3E%0D%0A%3CFET%2D8920%3E%0D%0A%3C测量%20范围%3E%0D%0A%3C瞬时%20流量%3E%0D %0A%3C%280%7E2000%29m3%2Fh%3E%0D%0A%3C累计%20flow%3E%0D%0A%3C%280%7E99999999%29m3%3E%0D%0A%3CFlow%20rate%3E%0D %0A%3C%280%2E5%7E5%29m%2Fs%3E%0D%0A%3C分辨率%3E%0D%0A%3C0%2E001m3%2Fh%3E%0D%0A%3C准确度%20level%3E%0D%0A %3C少%20比%202%2E5%25%20RS%20或%200%2E025m%2Fs%2E以%20为%20%20最大%3E%0D%0A%3C电导率%3E%0D%0A%3C%26gt%3B20%5Cu03bcS %2Fcm%3E%0D%0A%3C%284%7E20%29mA%20输出%3E%0D%0A%3C数量%20of%20通道%3E%0D%0A%3C单%20通道%3E%0D%0A%3C技术%20功能%3E%0D%0A%3CIsolated%2可逆%2C可调%2C%20meter%2F传输%26nbsp%3B双%20模式%3E%0D%0A%3CLoop%20电阻%3E%0D%0A%3C400%5Cu03a9%5Cuff08Max%5Cuff09%2C %20DC%2024V%3E%0D%0A%3C传输%20精度%3E%0D%0A%3C%5Cu00b10%2E1mA%3E%0D%0A%3C控制%20输出%3E%0D%0A%3C数量%20of%20通道%3E %0D%0A%3C单%20通道%3E%0D%0A%3C电气%20触点%3E%0D%0A%3C半导体%20光电%20继电器%3E%0D%0A%3CLoad%20容量%3E%0D%0A%3C50mA%5Cuff08Max %5Cuff09%2C%20DC%2030V%3E%0D%0A%3CControl%20mode%3E%0D%0A%3C瞬时%20amount%20upper%2Flower%20limit%20alarm%3E%0D%0A%3Cdigital%20output%3E%0D %0A%3CRS485%28MODBUS%20协议%20%29%2C脉冲%20输出1KHz%3E%0D%0A%3C工作%20power%3E%0D%0A%3CPower%20电源%3E%0D%0A%3CDC%209%7E28V%3E %0D%0A%3C源%3E%0D%0A%3C功率%20消耗%3E%0D%0A%3C%5Cu22643%2E0W%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C直径%3E%0D %0A%3CDN40%7EDN300%28can%20be%20定制%29%3E%0D%0A%3C工作%20环境%3E%0D%0A%3C温度%3A%280%7E50%29%26nbsp%3B%5Cu2103%3B%20相对%20湿度%3A%26nbsp%3B%5Cu226485%RH%28无%20凝露%29%3E%0D%0A%3C存储%20环境%3E%0D%0A%3C温度%3A%28%2D20%7E60%29%26nbsp%3B %5Cu2103%3B%20相对%20湿度%3A%26nbsp%3B%5Cu226485%RH%28无%20凝结%29%3E%0D%0A%3C保护%20等级%3E%0D%0A%3CIP65%3E%0D%0A%3C安装%20方法%3E%0D%0A%3C插入%26nbsp%3B管道%26nbsp%3B安装%3E%0D%0A%3C不同%20材料%20展览%20不同%20温度%20系数%20of%20电阻%2E%20Some%20材料%2C%20such %20as%20金属%20like%20铜%20和%20铝%2C%20有%20正%20温度%20系数%2C%20含义%20that%20their%20电阻%20增加%20with%20温度%2E%20其他%20材料%2C%20such%20as %20半导体%20like%20硅%20和%20锗%2C%20有%20负%20温度%20系数%2C%20含义%20that%20他们的%20电阻%20减少%20和%20温度%2E%7C%5Bembed%5Dhttps%3A%2F%2Fwww %2Eyoutube%2Ecom%2Fwatch%3Fv%3D1YnPr2NR5Zw%5B%2Fembed%5D%7C%20温度%20系数%20of%20电阻%20is%20典型%20表达%20as%20a%20百分比%20变化%20in%20电阻%20per%20度%20摄氏度%2E%20For%20示例%2C%20a%20材料%20with%20a%20温度%20系数%20of%200%2E0039%20ohms%20per%20ohm%20per%20度%20摄氏度%20will%20经验%20a%200%2E39%25 %20增加%20in%20电阻%20为%20每%20度%20摄氏度%20增加%20in%20温度%2E%7C%7C%20原因%20为什么%20电阻%20变化%20与%20温度%20谎言%20in%20%20原子%20结构%20的%20材料%2E%20In%20金属%2C%20电子%20移动%20自由%20通过%20the%20晶格%20of%20正%20带电%20离子%2E%20As%20%20温度%20增加%2C%20the%20离子%20振动%20更多%20大力%2C%20创造%20更多%20障碍%20为%20%20电子%20到%20导航%2E%20这%20增加%20振动%20导致%20到%20更多%20频繁%20碰撞%20在%20电子%20和%20离子%2C%20之间产生%20in%20更高%20电阻%2E%7C%7CIn%20半导体%2C%20the%20行为%20is%20轻微%20不同%2E%20At%20低%20温度%2C%20半导体%20behave%20like%20绝缘体%2C%20with%20very %20high%20电阻%2E%20As%20the%20温度%20增加%2C%20the%20energy%20levels%20of%20the%20电子%20in%20the%20semiconductor%20also%20增加%2C%20allowing%20them%20to%20move%20more %20freely%20through%20the%20material%2E%20This%20增加%20mobility%20of%20electrons%20leads%20to%20a%20decrease%20in%20resistance%2E%7C%5Bembed%5Dhttp%3A%2F%2Fshchimay%2Ecom%2Fwp %2D内容%2Fuploads%2F2023%2F11%2FEC%2D9900%2D%5Cu5927%5Cu5c4f%5Cu5e55%2D%5Cu9ad8%5Cu7cbe%5Cu5ea6%5Cu7535%5Cu5bfc%5Cu7387%5Cu4eea%2Emp4%5B%2Fembed%5D%7 C对%20温度%20的依赖性%20of%20电阻%20具有%20重要%20影响%20对于%20%20设计%20和%20性能%20of%20电子%20设备%2E%20对于%20示例%2C%20in%20电路%20其中%20精确%20控制%20of%20电阻%20是%20必需的%2C%20温度%20补偿%20技术%20可能%20be%20使用%20到%20抵消%20的%20影响%20的%20温度%20对%20电阻%2E%20在%20其他%20情况%2C%20的%20温度%20依赖性%20的%20电阻%20可能%20是%20利用%20到%20创建%20设备%20与%20特定%20温度%2D敏感%20属性%2C%20such%20as%20热敏电阻%20和%20温度%20传感器%2E%7C%7C在%20结论%2C%20 %20%20电阻%20和%20温度%20之间的%20关系%20%20a%20基本面%20方面%20of%20the%20行为%20of%20材料%20in%20电气%20电路%2E%20理解%20如何%20电阻%20变化%20与%20温度%20is %20必要%20用于%20设计%20和%20操作%20电子%20设备%20有效%2E%20By%20考虑%20%20温度%20系数%20的%20电阻%20和%20其%20影响%20在%20不同%20材料%2C%20工程师%20和%20科学家%20can%20开发%20创新%20解决方案%20到%20地址%20%20挑战%20pose%20by%20温度%20变化%20in%20电气%20系统%2E%3E%0D%0A%3CF因素%20影响%20阻力%20变化%20与%20温度%3E%0D%0A%3C电阻%20is%20a%20基本%20属性%20of%20any%20材料%20that%20阻碍%20the%20流量%20of%20电力%20电流%2E%20It%20is%20a%20crucial%20factor %20在%20中确定%20的%20行为%20的%20电气%20电路%20和%20设备%2E%20%20的%20中的%20关键%20因素%20那个%20影响%20电阻%20是%20温度%2E%20%20关系%20与%20电阻之间%20and%20温度%20is%20a%20well%2D建立%20现象%20in%20物理%2C%20和%20理解%20这个%20关系%20is%20本质%20for%20设计%20and%20分析%20电气%20系统%2E%3E%0D %0A%3CIn%20一般%2C%20%20电阻%20of%20a%20材料%20增加%20with%20an%20增加%20in%20温度%2E%20这个%20是%20known%20as%20正%20温度%20系数%20电阻%2E %20The%20原因%20背后%20this%20行为%20lies%20in%20the%20atomic%20struct%20of%20the%20material%2E%20At%20a%20微观%20level%2C%20the%20atoms%20in%20a%20material%20振动%20由于%20至%20热%20能量%2E%20As%20%20温度%20上升%2C%20%20振幅%20%20这些%20振动%20增加%2C%20导致%20%20原子%20至%20碰撞%20更多%20频繁%20与%20the%20电子%20that%20携带%20the%20electric%20current%2E%20This%20增加%20碰撞%20rate%20领先%20to%20a%20更高%20电阻%20to%20the%20flow%20of%20current%2E%7C%5嵌入%5Dhttp%3A%2F%2Fshchimay%2Ecom%2Fwp%2Dcontent%2Fuploads%2F2023%2F11%2FROS%2D360%2D7%5Cu5bf8%5Cu89e6%5Cu6478%5Cu5c4fRO%5Cu7a0b%5Cu63a7%5Cu5668%5Cu53cc%5Cu8def% 5Cu7535%5Cu5bfc%5Cu7387 %2Emp4%5B%2Fembed%5D%7C%20电阻%20与%20温度%20can%20be%20描述%20by%20the%20温度%20系数%20of%20电阻%20%28TCR%20%28TCR%29%2E%20%20TCR之间的%20关系%20 %20is%20a%20measure%20of%20how%20much%20the%20resistance%20of%20a%20material%20changes%20per%20 Degree%20Celsius%20change%20in%20Temperature%2E%20Different%20materials%20have%20 Different%20TCR%20values %2C%20which%20确定%20如何%20其%20电阻%20随着%20温度%2E%20变化%20例如%2C%20金属%20通常%20有%20正%20TCR%20值%2C%20而%20半导体%20可能%20有%20负%20TCR%20values%2E%7C%7COne%20of%20the%20most%20common%20applications%20of%20the%20Temperature%20dependence%20of%20resistance%20is%20in%20the%20design%20of%20Temperature%20sensors%2E%20Thermistors %2C%20for%20example%2C%20are%20devices%20whose%20resistance%20changes%20significantly%20with%20Temperature%2E%20This%20property%20makes%20them%20ideal%20for%20measuring%20Temperature%20in%20various%20applications%2C %20such%20as%20in%20恒温器%2C%20automotive%20systems%2C%20and%20medical%20devices%2E%3E%0D%0A%3CIt%20is%20important%20to%20note%20that%20not%20all%20materials%20exhibit %20a%20正%20温度%20系数%20of%20电阻%2E%20Some%20材料%2C%20such%20as%20超导体%2C%20have%20a%20负%20温度%20系数%20of%20电阻%2E%20In%20这些%20材料%2C%20the%20电阻%20降低%20as%20the%20温度%20降低%2C%20最终%20达到%20zero%20at%20a%20临界%20温度%20已知%20as%20the%20超导%20transition%20温度%2E%20This%20独特%20行为%20允许%20超导体%20到%20传导%20电力%20与%20零%20电阻%2C%20制造%20他们%20高度%20有价值%20用于%20应用%20such%20as%20磁性%20共振%20成像%20%28MRI%29%20机器%20and%20粒子%20加速器%2E%7C%7C%20温度%20依赖%20of%20电阻%20也%20扮演%20a%20crucial%20角色%20in%20the%20性能%20of%20电子%20设备%2E%20For%20example%2C %20in%20集成%20电路%2C%20the%20电阻%20of%20the%20导电%20痕迹%20和%20组件%20can%20变化%20与%20温度%2C%20影响%20the%20总体%20性能%20of%20the%20电路%2E %20工程师%20必须%20将%20纳入%20帐户%20的%20温度%20系数%20的%20电阻%20当%20设计%20电路%20到%20确保%20他们的%20可靠性%20和%20稳定性%20over%20a%20wide%20range%20of%20操作%20温度%2E%7C%7CIn%20结论%2C%20%20关系%20%20电阻%20和%20温度%20之间是%20a%20基本面%20方面%20的%20电气%20工程%20和%20物理%2E%20理解%20如何%20电阻%20变化%20与%20温度%20是%20必需的%20用于%20设计%20和%20分析%20电气%20系统%2C%20as%20well%20as%20用于%20开发%20温度%20传感器%20和%20电子%20设备%2E%20%20温度%20系数%20of%20电阻%20提供%20a%20定量%20测量%20of%20这个%20关系%2C%20允许%20工程师%20到%20预测%20和%20控制%20%20行为%20of%20材料%20在%20不同%20温度%20条件下%2E%20By%20考虑%20%20温度%20依赖性%20of%20电阻%2C%20工程师%20可以%20优化%20%20性能%20和%20可靠性%20of%20电气%20系统%20in%20a%20宽%20范围%20of%20应用%2E%3E%0D%0A

%2525253C为什么%20做%20电阻%20变化%20与%20温度%3E%0D%0A%3C%2D%2D%2D%3E%0D%0A%3C%22电阻%3A%20变化%20与%20%20热%2E%22 %3E%0D%0A%3CEffects%20of%20温度%20on%20电气%20电阻%3E%0D%0A%3C电阻%20is%20a%20基本%20属性%20of%20材料%20that%20描述%20how%20困难%20it%20is %20为%20电%20电流%20到%20流%20通过%20them%2E%20It%20is%20测量%20in%20ohms%20与%20is%20影响%20by%20各种%20因素%2C%20包括%20温度%2E%20%20关系%20之间%20电阻%20和%20温度%20是%20a%20well%2Dknown%20现象%20在%20的%20领域%20的%20物理%20和%20扮演%20a%20关键的%20角色%20在%20的%20设计%20和%20操作%20的%20电气%20电路%20和%20设备%2E%3E%0D%0A%3CPOP%2D8300%20free%20氯%20在线%20分析仪%3E%0D%0A%3CSystem%20型号%3E%0D%0A%3CPOP%2D8300%20free %20氯%20在线%20分析仪%3E%0D%0A%3C测量%20配置%3E%0D%0A%3C%28HClO%29free%20氯%2E%2E%3E%0D%0A%3C总计%20free%20氯%2F%28ClO2 %29%2FpH%2F温度%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C游离%20氯%3E%0D%0A%3C%280%2E00%2D2%2E00%29mg%2FL%28ppm%29 %3B%26nbsp%3B%26nbsp%3B%20%280%2E00%2D20%2E00%29mg%2FL%28ppm%29%3E%0D%0A%3C测量%3E%0D%0A%3CpH%3E%0D%0A %3Crange%3E%0D%0A%3C温度%3E%0D%0A%3C%280%2E0%2D99%2E9%29%5Cu2103%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3CFree%20氯%3E%0D%0A%3C0%2E01mg%2FL%28ppm%29%3E%0D%0A%3C分辨率%3E%0D%0A%3CpH%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C温度%3E%0D%0A%3C0%2E1%5Cu2103%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C不含%20氯%3E%0D%0A%3C指示%20错误%2010%25%3E%0D %0A%3C准确度%3E%0D%0A%3CpH%3E%0D%0A%3C0%2E1pH%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C温度%3E%0D%0A%3C%5Cu00b10 %2E5%5Cu2103%3E%0D%0A%3C传感器%20life%3E%0D%0A%3CpH%2Ffree%20氯%20传感器%3E%0D%0A%3C12个月%28%20service%20life%20是%20密切%20相关%20 %20%20测量%20中%20和%20维护%20频率%29%3E%0D%0A%3C通讯%20接口%3E%0D%0A%3CRS485%3E%0D%0A%3CMODBUS%20RTU%20通讯%20协议%3E%0D %0A%3C%5Cu3000%3E%0D%0A%3C数量%20of%20通道%3E%0D%0A%3C双%20通道%3E%0D%0A%3C%284%2D20%29mA%3E%0D%0A%3C技术%20feature%3E%0D%0A%3CIsolated%2C%20可逆%2C%20完全%20可调%2C%20instrument%2F发射器%20dual%20mode%3E%0D%0A%3Coutput%3E%0D%0A%3CChannel%20configuration%3E %0D%0A%3C可编程%20点%20至%20游离%20氯%2C%20氯%20二氧化物%2C%20温度%2C%20pH%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3CLoop%20电阻%3E %0D%0A%3C400%5Cu03a9%28Max%29%2C%20DC%2024V%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C传输%20精度%3E%0D%0A%3C%5Cu00b10%2E1mA %3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C数量%20of%20通道%3E%0D%0A%3C双%20通道%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C联系人%20mode%3E%0D%0A%3C%20first%20and%20second%20为%20光电%20switch%3E%0D%0A%3CControl%20output%3E%0D%0A%3CLoad%20capacity%3E%0D%0A%3CLoad %20电流%2050mA%28Max%29%5Cuff0cAC%2FDC%2030V%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3CControl%20point%3E%0D%0A%3C可编程%20function%28Free%20氯%2C %20氯%20二氧化物%2C%20温度%2C%20pH%2C%20计时%29%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3CLoad%20容量%3E%0D%0A%3CLoad%20电流%2050mA %28Max%29%5Cuff0cAC%2FDC%2030V%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3CControl%20point%3E%0D%0A%3C可编程%20function%28Free%20氯%2C%20氯%20二氧化物%2C%20温度%2C%20pH%2C%20计时%29%3E%0D%0A%3C电源%20电源%3E%0D%0A%3C已连接%20至%20电%20电源%3E%0D%0A%3C%5Cu3000%3E %0D%0A%3CAC80%2D260V%3B50%2F60Hz%2C兼容%20with%20all%20国际%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3Cmarket%20power%20standards%28110V%3B220V%3B260V%3B50 %2F60Hz%29%2E%3E%0D%0A%3C工作%20环境%3E%0D%0A%3C温度%3A%285%2D50%29%5Cu2103%5袖口1相对%20湿度%3A%5Cu226485%25%20RH%28非%20凝露%29%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C功率%20消耗%3E%0D%0A%3C%5Cuff1c20W%3E%0D%0A%3C存储%20环境%3E%0D%0A%3C温度%3A%28%2D20%2D70%29%5Cu2103%5袖口1相对%20湿度%3A%5Cu226485%RH%28非%20凝露%29%3E%0D%0A%3C安装%3E%0D%0A%3CWall%20安装%28与%20 %20预设%20back%20封面%29%3E%0D%0A%3CCabinet%20重量%3E%0D%0A%3C%5Cu226410kg%3E%0D%0A%3CCabinet%20尺寸%3E%0D%0A%3C570%2Amm%2A380mm %2A130mm%28H%5Cu00d7W%5Cu00d7D%29%3E%0D%0A%3C当%20a%20材料%20是%20受到%20到%20an%20电%20电流%2C%20%20运动%20的%20电子%20在%20%20材料%20产生%20热%2E%20这%20热%20导致%20%20原子%20在%20到%20振动%20更多%20大力%2C%20其中%20在%20转%20增加%20%20原子%20在%20电子%20和%20之间%20atoms%2E%20These%20collisions%20impede%20the%20flow%20of%20电子%2C%20resulting%20in%20an%20increase%20in%20resistance%2E%20This%20phenomenon%20is%20known%20as%20the%20Temperature%20coefficient %20of%20电阻%2E%3E%0D%0A%3C仪器%20型号%3E%0D%0A%3CFET%2D8920%3E%0D%0A%3C测量%20范围%3E%0D%0A%3C瞬时%20流量%3E%0D %0A%3C%280%7E2000%29m3%2Fh%3E%0D%0A%3C累计%20flow%3E%0D%0A%3C%280%7E99999999%29m3%3E%0D%0A%3CFlow%20rate%3E%0D %0A%3C%280%2E5%7E5%29m%2Fs%3E%0D%0A%3C分辨率%3E%0D%0A%3C0%2E001m3%2Fh%3E%0D%0A%3C准确度%20level%3E%0D%0A %3C少%20比%202%2E5%25%20RS%20或%200%2E025m%2Fs%2E以%20为%20%20最大%3E%0D%0A%3C电导率%3E%0D%0A%3C%26gt%3B20%5Cu03bcS %2Fcm%3E%0D%0A%3C%284%7E20%29mA%20输出%3E%0D%0A%3C数量%20of%20通道%3E%0D%0A%3C单%20通道%3E%0D%0A%3C技术%20功能%3E%0D%0A%3CIsolated%2可逆%2C可调%2C%20meter%2F传输%26nbsp%3B双%20模式%3E%0D%0A%3CLoop%20电阻%3E%0D%0A%3C400%5Cu03a9%5Cuff08Max%5Cuff09%2C %20DC%2024V%3E%0D%0A%3C传输%20精度%3E%0D%0A%3C%5Cu00b10%2E1mA%3E%0D%0A%3C控制%20输出%3E%0D%0A%3C数量%20of%20通道%3E %0D%0A%3C单%20通道%3E%0D%0A%3C电气%20触点%3E%0D%0A%3C半导体%20光电%20继电器%3E%0D%0A%3CLoad%20容量%3E%0D%0A%3C50mA%5Cuff08Max %5Cuff09%2C%20DC%2030V%3E%0D%0A%3CControl%20mode%3E%0D%0A%3C瞬时%20amount%20upper%2Flower%20limit%20alarm%3E%0D%0A%3Cdigital%20output%3E%0D %0A%3CRS485%28MODBUS%20协议%20%29%2C脉冲%20输出1KHz%3E%0D%0A%3C工作%20power%3E%0D%0A%3CPower%20电源%3E%0D%0A%3CDC%209%7E28V%3E %0D%0A%3C源%3E%0D%0A%3C功率%20消耗%3E%0D%0A%3C%5Cu22643%2E0W%3E%0D%0A%3C%5Cu3000%3E%0D%0A%3C直径%3E%0D %0A%3CDN40%7EDN300%28can%20be%20定制%29%3E%0D%0A%3C工作%20环境%3E%0D%0A%3C温度%3A%280%7E50%29%26nbsp%3B%5Cu2103%3B%20相对%20湿度%3A%26nbsp%3B%5Cu226485%RH%28无%20凝露%29%3E%0D%0A%3C存储%20环境%3E%0D%0A%3C温度%3A%28%2D20%7E60%29%26nbsp%3B %5Cu2103%3B%20相对%20湿度%3A%26nbsp%3B%5Cu226485%RH%28无%20凝结%29%3E%0D%0A%3C保护%20等级%3E%0D%0A%3CIP65%3E%0D%0A%3C安装%20方法%3E%0D%0A%3C插入%26nbsp%3B管道%26nbsp%3B安装%3E%0D%0A%3C不同%20材料%20展览%20不同%20温度%20系数%20of%20电阻%2E%20Some%20材料%2C%20such %20as%20金属%20like%20铜%20和%20铝%2C%20有%20正%20温度%20系数%2C%20含义%20that%20their%20电阻%20增加%20with%20温度%2E%20其他%20材料%2C%20such%20as %20半导体%20like%20硅%20和%20锗%2C%20有%20负%20温度%20系数%2C%20含义%20that%20他们的%20电阻%20减少%20和%20温度%2E%7C%5Bembed%5Dhttps%3A%2F%2Fwww %2Eyoutube%2Ecom%2Fwatch%3Fv%3D1YnPr2NR5Zw%5B%2Fembed%5D%7C%20温度%20系数%20of%20电阻%20is%20典型%20表达%20as%20a%20百分比%20变化%20in%20电阻%20per%20度%20摄氏度%2E%20For%20示例%2C%20a%20材料%20with%20a%20温度%20系数%20of%200%2E0039%20ohms%20per%20ohm%20per%20度%20摄氏度%20will%20经验%20a%200%2E39%25 %20增加%20in%20电阻%20为%20每%20度%20摄氏度%20增加%20in%20温度%2E%7C%7C%20原因%20为什么%20电阻%20变化%20与%20温度%20谎言%20in%20%20原子%20结构%20的%20材料%2E%20In%20金属%2C%20电子%20移动%20自由%20通过%20the%20晶格%20of%20正%20带电%20离子%2E%20As%20%20温度%20增加%2C%20the%20离子%20振动%20更多%20大力%2C%20创造%20更多%20障碍%20为%20%20电子%20到%20导航%2E%20这%20增加%20振动%20导致%20到%20更多%20频繁%20碰撞%20在%20电子%20和%20离子%2C%20之间产生%20in%20更高%20电阻%2E%7C%7CIn%20半导体%2C%20the%20行为%20is%20轻微%20不同%2E%20At%20低%20温度%2C%20半导体%20behave%20like%20绝缘体%2C%20with%20very %20high%20电阻%2E%20As%20the%20温度%20增加%2C%20the%20energy%20levels%20of%20the%20电子%20in%20the%20semiconductor%20also%20增加%2C%20allowing%20them%20to%20move%20more %20freely%20through%20the%20material%2E%20This%20增加%20mobility%20of%20electrons%20leads%20to%20a%20decrease%20in%20resistance%2E%7C%5Bembed%5Dhttp%3A%2F%2Fshchimay%2Ecom%2Fwp %2D内容%2Fuploads%2F2023%2F11%2FEC%2D9900%2D%5Cu5927%5Cu5c4f%5Cu5e55%2D%5Cu9ad8%5Cu7cbe%5Cu5ea6%5Cu7535%5Cu5bfc%5Cu7387%5Cu4eea%2Emp4%5B%2Fembed%5D%7 C对%20温度%20的依赖性%20of%20电阻%20具有%20重要%20影响%20对于%20%20设计%20和%20性能%20of%20电子%20设备%2E%20对于%20示例%2C%20in%20电路%20其中%20精确%20控制%20of%20电阻%20是%20必需的%2C%20温度%20补偿%20技术%20可能%20be%20使用%20到%20抵消%20的%20影响%20的%20温度%20对%20电阻%2E%20在%20其他%20情况%2C%20的%20温度%20依赖性%20的%20电阻%20可能%20是%20利用%20到%20创建%20设备%20与%20特定%20温度%2D敏感%20属性%2C%20such%20as%20热敏电阻%20和%20温度%20传感器%2E%7C%7C在%20结论%2C%20 %20%20电阻%20和%20温度%20之间的%20关系%20%20a%20基本面%20方面%20of%20the%20行为%20of%20材料%20in%20电气%20电路%2E%20理解%20如何%20电阻%20变化%20与%20温度%20is %20必要%20用于%20设计%20和%20操作%20电子%20设备%20有效%2E%20By%20考虑%20%20温度%20系数%20的%20电阻%20和%20其%20影响%20在%20不同%20材料%2C%20工程师%20和%20科学家%20can%20开发%20创新%20解决方案%20到%20地址%20%20挑战%20pose%20by%20温度%20变化%20in%20电气%20系统%2E%3E%0D%0A%3CF因素%20影响%20阻力%20变化%20与%20温度%3E%0D%0A%3C电阻%20is%20a%20基本%20属性%20of%20any%20材料%20that%20阻碍%20the%20流量%20of%20电力%20电流%2E%20It%20is%20a%20crucial%20factor %20在%20中确定%20的%20行为%20的%20电气%20电路%20和%20设备%2E%20%20的%20中的%20关键%20因素%20那个%20影响%20电阻%20是%20温度%2E%20%20关系%20与%20电阻之间%20and%20温度%20is%20a%20well%2D建立%20现象%20in%20物理%2C%20和%20理解%20这个%20关系%20is%20本质%20for%20设计%20and%20分析%20电气%20系统%2E%3E%0D %0A%3CIn%20一般%2C%20%20电阻%20of%20a%20材料%20增加%20with%20an%20增加%20in%20温度%2E%20这个%20是%20known%20as%20正%20温度%20系数%20电阻%2E %20The%20原因%20背后%20this%20行为%20lies%20in%20the%20atomic%20struct%20of%20the%20material%2E%20At%20a%20微观%20level%2C%20the%20atoms%20in%20a%20material%20振动%20由于%20至%20热%20能量%2E%20As%20%20温度%20上升%2C%20%20振幅%20%20这些%20振动%20增加%2C%20导致%20%20原子%20至%20碰撞%20更多%20频繁%20与%20the%20电子%20that%20携带%20the%20electric%20current%2E%20This%20增加%20碰撞%20rate%20领先%20to%20a%20更高%20电阻%20to%20the%20flow%20of%20current%2E%7C%5嵌入%5Dhttp%3A%2F%2Fshchimay%2Ecom%2Fwp%2Dcontent%2Fuploads%2F2023%2F11%2FROS%2D360%2D7%5Cu5bf8%5Cu89e6%5Cu6478%5Cu5c4fRO%5Cu7a0b%5Cu63a7%5Cu5668%5Cu53cc%5Cu8def% 5Cu7535%5Cu5bfc%5Cu7387 %2Emp4%5B%2Fembed%5D%7C%20电阻%20与%20温度%20can%20be%20描述%20by%20the%20温度%20系数%20of%20电阻%20%28TCR%20%28TCR%29%2E%20%20TCR之间的%20关系%20 %20is%20a%20measure%20of%20how%20much%20the%20resistance%20of%20a%20material%20changes%20per%20 Degree%20Celsius%20change%20in%20Temperature%2E%20Different%20materials%20have%20 Different%20TCR%20values %2C%20which%20确定%20如何%20其%20电阻%20随着%20温度%2E%20变化%20例如%2C%20金属%20通常%20有%20正%20TCR%20值%2C%20而%20半导体%20可能%20有%20负%20TCR%20values%2E%7C%7COne%20of%20the%20most%20common%20applications%20of%20the%20Temperature%20dependence%20of%20resistance%20is%20in%20the%20design%20of%20Temperature%20sensors%2E%20Thermistors %2C%20for%20example%2C%20are%20devices%20whose%20resistance%20changes%20significantly%20with%20Temperature%2E%20This%20property%20makes%20them%20ideal%20for%20measuring%20Temperature%20in%20various%20applications%2C %20such%20as%20in%20恒温器%2C%20automotive%20systems%2C%20and%20medical%20devices%2E%3E%0D%0A%3CIt%20is%20important%20to%20note%20that%20not%20all%20materials%20exhibit %20a%20正%20温度%20系数%20of%20电阻%2E%20Some%20材料%2C%20such%20as%20超导体%2C%20have%20a%20负%20温度%20系数%20of%20电阻%2E%20In%20这些%20材料%2C%20the%20电阻%20降低%20as%20the%20温度%20降低%2C%20最终%20达到%20zero%20at%20a%20临界%20温度%20已知%20as%20the%20超导%20transition%20温度%2E%20This%20独特%20行为%20允许%20超导体%20到%20传导%20电力%20与%20零%20电阻%2C%20制造%20他们%20高度%20有价值%20用于%20应用%20such%20as%20磁性%20共振%20成像%20%28MRI%29%20机器%20and%20粒子%20加速器%2E%7C%7C%20温度%20依赖%20of%20电阻%20也%20扮演%20a%20crucial%20角色%20in%20the%20性能%20of%20电子%20设备%2E%20For%20example%2C %20in%20集成%20电路%2C%20the%20电阻%20of%20the%20导电%20痕迹%20和%20组件%20can%20变化%20与%20温度%2C%20影响%20the%20总体%20性能%20of%20the%20电路%2E %20工程师%20必须%20将%20纳入%20帐户%20的%20温度%20系数%20的%20电阻%20当%20设计%20电路%20到%20确保%20他们的%20可靠性%20和%20稳定性%20over%20a%20wide%20range%20of%20操作%20温度%2E%7C%7CIn%20结论%2C%20%20关系%20%20电阻%20和%20温度%20之间是%20a%20基本面%20方面%20的%20电气%20工程%20和%20物理%2E%20理解%20如何%20电阻%20变化%20与%20温度%20是%20必需的%20用于%20设计%20和%20分析%20电气%20系统%2C%20as%20well%20as%20用于%20开发%20温度%20传感器%20和%20电子%20设备%2E%20%20温度%20系数%20of%20电阻%20提供%20a%20定量%20测量%20of%20这个%20关系%2C%20允许%20工程师%20到%20预测%20和%20控制%20%20行为%20of%20材料%20在%20不同%20温度%20条件下%2E%20By%20考虑%20%20温度%20依赖性%20of%20电阻%2C%20工程师%20可以%20优化%20%20性能%20和%20可靠性%20of%20电气%20系统%20in%20a%20宽%20范围%20of%20应用%2E%3E%0D%0A

“Resistance: Changing with the Heat.” Effec…